skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Burt, William"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The major sources of macronutrients (nitrate, ammonium, phosphate, and silicic acid) in Jakolof Bay, Alaska are submarine groundwater discharge (SGD), rivers, and offshore water. We estimated SGD using natural geochemical tracers (radon and radium), a salt mass balance, and a two-component salinity mixing equation based on the change in groundwater salinity on falling lower low tide. Previous studies have hypothesized that the major macronutrient input into Jakolof Bay is offshore water. This study challenges that assumption by determining the relative contribution of macronutrients from SGD relative to offshore water and rivers. Here, SGD is tidally driven and, as the Northern Gulf of Alaska experiences some of the largest tidal ranges in the world, the SGD fluxes from this region are high relative to the global average regardless of local sediment type. The fluxes ranged from 596 ± 85 cm day−1at low tide to 97 ± 83 cm day−1at high tide and are predominantly composed of recirculated seawater (89%) rather than freshwater (11%). The major macronutrients in seawater had different input mechanisms into the semi-enclosed bay. SGD and offshore waters contend as the primary sources of nitrate, which is shown to be the limiting nutrient in this coastal area, while SGD dominates the input of silicic acid. Conversely, the aquifer is found to be a sink for phosphate, indicating that the nutrient is primarily sourced from offshore water. 
    more » « less
  2. The Line Height Absorption (LHA) method uses absorption of light to estimate chlorophyll-a. While most users consider regional variability and apply corrections, the effect of temporal variability is typically not explored. The Northern Gulf of Alaska (NGA) was selected for this study because there was no published regional value and its large swings in temporal productivity would make it a good candidate to evaluate the effect of temporal variability on the relationship. The mean NGA value of 0.0114 obtained here should be treated with caution, as variation in the slope of the relationship (aLH*), and thus chlorophyll-a estimates, in the NGA region varied by ∼25% between spring (aLH* = 0.0109) and summer (aLH* = 0.0137). Results suggest that this change is driven by a shift in pigment packaging and cell size associated with changes in mixed layer depth and stratification. Consideration of how temporal variability may affect the accuracy of the LHA method in other regions is thus recommended. 
    more » « less
  3. Abstract Some of the longest and most comprehensive marine ecosystem monitoring programs were established in the Gulf of Alaska following the environmental disaster of the Exxon Valdez oil spill over 30 years ago. These monitoring programs have been successful in assessing recovery from oil spill impacts, and their continuation decades later has now provided an unparalleled assessment of ecosystem responses to another newly emerging global threat, marine heatwaves. The 2014–2016 northeast Pacific marine heatwave (PMH) in the Gulf of Alaska was the longest lasting heatwave globally over the past decade, with some cooling, but also continued warm conditions through 2019. Our analysis of 187 time series from primary production to commercial fisheries and nearshore intertidal to offshore oceanic domains demonstrate abrupt changes across trophic levels, with many responses persisting up to at least 5 years after the onset of the heatwave. Furthermore, our suite of metrics showed novel community-level groupings relative to at least a decade prior to the heatwave. Given anticipated increases in marine heatwaves under current climate projections, it remains uncertain when or if the Gulf of Alaska ecosystem will return to a pre-PMH state. 
    more » « less